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Based on Peano kernel technique, explicit error bounds (optimal for the highest
order derivative) are proved for the derivatives of cardinal spline interpolation
(interpolating at the knots for odd degree splines and at the midpoints between two
knots for even degree splines). The results are based on a new representation of the
Peano kernels and on a thorough investigation of their zero distributions. The
bounds are given in terms of Euler�Frobenius polynomials and their zeros. � 1999
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1. INTRODUCTION

Let s be a cardinal spline function of degree n defined over the uniform
partition Z of R [13]. The cardinal spline s is said to be the cardinal spline
interpolation of f at shifted nodes if for a given v # [0, 1] we have s(l+v)=
f (l+v) for all l # Z. Contributions on the analysis of the cardinal spline
interpolation problem have been done by several authors; let us mention
the important works of Schoenberg [13�15], de Boor and Schoenberg [2],
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and Subbotin [17, 18]. This paper is a continuation of [7]. Based on new
representations (2.4)�(2.5) of Peano kernels, already known results of de
Boor and Schoenberg [2] and Schoenberg [15] are generalized and new
results are obtained.

The unique solvability of this interpolation problem for functions of
polynomial growth is well known (Schoenberg [13, 14], Micchelli [11],
ter Morsche [19, 20], Dubeau and Savoie [6]). It happens under the
restriction

v{{n={0 (or 1)
1
2

for n even,
for n odd.

(1.1)

Let us consider the function spaces

L1
loc(R)={ f : R � R } |

b

a
| f (x)| dx<� for any interval [a, b]/R=

and

AC n+1
loc (R)

={ f # C n(R) } (i) f (n+1) # L1
loc(R)

(ii) for all [a, b]/R, f (n)(x) | b
a=�b

a f (n+1)(x) dx= .

A function f is said to be of polynomial growth on R if there exists an
integer &�0 such that f (x)=O( |x| &) for |x| � +�.

For any f # AC n+1
loc (R), the linear dependence relationships of ter

Morsche [19, 20, 5] and the Peano Kernel Theorem [1, 4, 6] lead to

pn(v, E ) f (k)(l+u)&pk
n(u, E) f (l+v)=|

n+1

0
K k

n (u, v, %) f (n+1)(l+%) d%

for any l # Z, u # [0, 1], and k=0, ..., n, where E is the shift operator
Ef (t)=f (t+1), pn(v, z) is the generalized Euler�Frobenius polynomials
[3, 19, 20], pk

n(u, E )=pn&k(u, E )(E&I )k, and

K k
n(u, v, %)=pn(v, E )

(u&%)n&k
+

(n&k)!
&pk

n(u, E)
(v&%)n

+

n!
.

Let e be the interpolating error, e(x)=f (x)&s(x), and e(k) be its
derivative of order k. Then

pn(v, E ) e(k)(l+u)=|
n+1

0
K k

n(u, v, %) f (n+1)(l+%) d%.
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Moreover, if f (n+1) is of polynomial growth, under (1.1) we obtain

e(k)(l+u)=|
�

&�
N k

n(u, v, %) f (n+1)(l+%) d%, (1.2)

where

N k
n (u, v, %)=(u&%)n&k

+ �(n&k)!&pn(v, E )&1 pk
n(u, E )(v&%)n

+ �n!. (1.3)

Then, using (1.2) for f (n+1) # L�(R), we obtain

|e(k)(l+u)|�Ak
n(u, v) & f (n+1)&� (1.4)

for any u # [0, 1] and

&e(k)&��Ak
n(v) & f (n+1)&� , (1.5)

where

Ak
n(u, v)=|

�

&�
|N k

n(u, v, %)| d% (1.6)

and

Ak
n(v)= sup

u # [0, 1]

Ak
n(u, v) (1.7)

are the best constants.
For k=0 it can be shown [7] that

A0
n(u, v)=

1
2n+1 }En+2(u)&En+1(u)

En+2(v)
En+1(v) }

and

A0
n(v)=

1
2n+1 max

u # [0, 1] \ |En+2(u)|+|En+1(u)|
|En+2(v)|
|En+1(v)|+ ,

where En+1 is the Euler spline of degree n. Moreover,

min
0�v�1

A0
n(v)=A0

n(vn)=
|En+2(vn+1)|

2n+1 , (1.8)
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where

vn={
1
2

0 (or 1)
for n even,
for n odd.

Let us point out that de Boor and Schoenberg [2] and Schoenberg [15],
using the fundamental cardinal splines, have already obtained (1.2) for
k=0 and v=vn and (1.8) for A0

n(vn).
For k>0, an upper bound for the constants Ak

n(u, v) and Ak
n(v) obtained

in [7] is

Ak
n(v)�

(?2�2)k&n

2 |En+1(v)|
. (1.9)

From (1.8) and (1.9) for v=vn , it follows &e(k)&��Bk
n & f (n+1)&� for

k=0, ..., n, where

Bk
n=

(?2�2)k

2?n . (1.10)

This is a good bound for low values of k, but can be improved for large
values of k.

The goal of this paper is twofold. First, we present explicit exact expressions
of Ak

n(u, vn) for particular values of u, and exact values and�or good bounds
for Ak

n(vn). Second, to achieve the first part, we are lead to find new
representations for the kernels which are useful to analyse their zero
distributions.

In Section 2, new representations (2.4) and (2.5) for the Peano kernels
are presented and properties are obtained. These representations are given
in terms of the roots of the Euler�Frobenius polynomials in the set An(vn)=
[: # R | pn(vn , :)=0 and &1<:]. In Section 3, we obtain the following
exact optimal constants for the case k=n

An
n(vn)=An

n(0, vn)=
1
2

&
2

(n+1)
:

: # An(vn)

:
1+:

. (1.11)

To get similar expressions for Ak
n(u, vn) for specific values of u and to

obtain bounds for Ak
n(vn) for k=1, ..., n&1, a thorough investigation of the

zero distributions of the Peano kernels is done in Section 4. Finally, the
bounds for the cases k=1, ..., n&1, are obtained in Section 5. We obtain
the relation

max[Ak
n(vn&k , vn), Ak

n(vn&k+1 , vn)]

�Ak
n(vn)�Ak

n(vn&k , vn)+Ak
n(vn&k+1 , vn), (1.12)
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where Ak
n(vn&k+1 , vn)=|En&k+2(vn&k+1)|�2n&k+1, and the following

pointwise optimal error bounds for specific values of u:

(i) for n&k odd,

Ak
n(vn&k , vn)=Ak

n(0, vn)=
2

n+1 } :
: # An(vn)

pn&k(1, :)
(1+:)(1&:)n&k } , (1.13)

(ii) for n&k even,

Ak
n(vn&k , vn)=Ak

n \1
2

, vn+
=

2
n+1 } :

: # An(vn)

:pn&k(1�2, :)
(1&:)n&k _ 1

1+:
+

pn+1(1&vn , :)&pn+1(1�2&vn , :)
(1&:) pn+1(vn , :) & } .

(1.14)

Considering the preceding results for k=1, ..., n, we get the bounds

1
?n&k+1�Ak

n(vn)�2
- n+1

?n&k . (1.15)

This last upper bound is better than Bk
n for large values of k.

Example 1.1. As special cases of our results, we obtain the following best
constants for quadratic and cubic splines:

(a) n=2 and v=v2= 1
2 : A0

2(
1
2)=A0

2(0, 1
2)= 1

24 , A1
2(

1
2)=A1

2( 1
2 , 1

2)= 1
8 ,

A2
2(

1
2)=A2

2(0, 1
2)=(1+2 - 2)�6;

(b) n=3 and v=v3=0: A0
3(0)=A0

3( 1
2 , 0)= 5

384 , A1
3(0)=A1

3(0, 0)= 1
24 ,

A2
3(0)=A2

3(0, 0)=- 3�12, A3
3(0)=A3

3(0, 0)=(1+- 3)�4.

These constants also appear in [12] for periodic quadratic and cubic splines on
a uniform partition.

In the next two remarks we present only properties of Euler�Frobenius poly-
nomials used in this paper. For more details look at the indicated references.

Remark 1.2 [3, 8, 19, 20]. We can define the generalized Euler�Frobenius
polynomials pn(v, z) for all v # R by the formula

pn(v, z)= :
�

j=&�

Qn(n+v&j) z j or
pn(v, z)

(1&z)n+1= :
�

j=&�

( j+1&v)n
+

n!
z j.

(1.16)
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They satisfy the recurrence relation: p0(v, z)=1, and for n�0

(n+1) pn+1(v, z)=[(1&v)+(n+v) z] pn(v, z)+z(1&z) �z pn(v, z). (1.17)

In the sequel we will use the following consequences of the definition of pn(v, z):
(i) pn(v+1, z)=zpn(v, z), (ii) pn(v, z)=znpn(1&v, 1�z), and pk

n(v, z)=
(�k��vk) pn(v, z)=(z&1)k pn&k(v, z) for k=0, ..., n.

Remark 1.3 [8, 9]. Let An(v)=[: # R | pn(v, :)=0 and &1<:]. If
An(v){<, set :n(v)=min[: | : # An(v)] and :n=:(vn). The decreasing
property of the main roots of the Euler�Frobenius polynomials [8] implies
that [:n]�

n=2 is a decreasing sequence of negative numbers lower bounded by
&1. Also, if n�2 and 1�k�n&1, there exists a unique uk

n # (0, 1) such
that (i) pn&k(1&uk

n , :n)=0 if n&k is odd, and (ii) pn&k(uk
n , :n)=0 if n&k

is even. Moreover, uk
n # (0, 1

2), and if we set _k
n=pn&k(1, :n), then we have

_k
n=(&1)w(n&k+1)�2x.

2. PEANO KERNELS: IDENTIFICATION AND PROPERTIES

It is known that pn(v, } ) has no zeros on the unit circle centered at zero for
v{{n . Therefore, pk

n(u, z)�pn(v, z) has a Laurent expansion on an annulus con-
taining the unit circle. Let this expansion be

pk
n(u, z)�pn(v, z)= :

�

j=&�

ak
n, j (u, v) z j, (2.1)

where

ak
n, j (u, v)=

1
2?i |Cr

pk
n(u, z)

pn(v, z) z j+1 dz, (2.2)

Cr is the counterclockwise oriented circle of radius r centered at 0, and
|r&1|<$ for small $ depending on v. Hence, the functions

N k
n(u, v, %)=

(u&%)n&k
+

(n&k)!
& :

�

j=&�

ak
n, j (u, v)

(v+j&%)n
+

n!
(2.3)

are well defined. In this section we obtain representations and properties of
N k

n(u, v, %) based on (2.1), (2.2), (2.3), and properties of Euler�Frobenius poly-
nomials pn(v, z). In particular, it is shown that if N k

n(u, v, %) is defined by (2.3)
it satisfies (1.2). The results we obtain extend those of [2, 15] for N 0

n (u, vn , %).
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Theorem 2.1. If either k=n and %{u or 0�k<n, we have

N k
n(u, v, %)={

(u&%)n&k
+

(n&k)!
&

1
2?i |C1&=

pn&k(1&u, z)
pn(1&v, z)

pn(%&v, z)
(1&z)n&k+1 dz,

(&1)n&k+1 (%&u)n&k
+

(n&k)!
&

1
2?i |C1&=

pn&k(u, z)
pn(v, z)

pn(v&%, z)
(z&1)n&k+1 dz.

(2.4)

Moreover,

(i) if either k=n and u # (0, 1) or 0�k<n, then N k
n(u, v, j )=0

for j # Z;

(ii) if u # [0, 1], then N n
n(u, v, j)=0 for j # Z&[u], and N n

n(1, v, 1+)=0
and N n

n(0, v, 0&)=0.

Proof. We first observe that using the change of variable w=1�z and
Remark 1.2, (2.2) becomes

ak
n, j (u, v)=

1
2?i |C1&=

pk
n(1&u, z) z j&1

pn(1&v, z)
dz.

Then from (2.3)

N k
n (u, v, %)=

(u&%)n&k
+

(n&k)!
&

1
2?i |C1&=

pk
n(1&u, z)

pn(1&v, z)
� j # Z (v&%+j )n

+ z j&1

n!
dz,

and from (1.16) we get the first expression for N k
n (u, v, %). In the same way

N k
n (u, v, %)=

(u&%)n&k
+

(n&k)!
&

1
2?i |C1+=

pn&k(u, z)
pn(v, z)

pn(v&%, z)
(z&1)n&k+1 dz.

Let z=ew. Then

R=Res _ pn&k(u, z)
pn(v, z)

pn(v&%, z)
(z&1)n&k+1&z=1

=Res _ew pn&k(u, ew)
pn(v, ew)

pn(v&%, ew)
(ew&1)n&k+1&w=0

.

From (1.16), it follows that

pm(t, ew)
(1&ew)m+1=

e&(1&t) w

m!
d m

dwm

e(1&t) w

1&ew =e&(1&t) w (&1)m+1

wm+1 [1+o(wm+1)].
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Therefore,

R=Res _ e(u&%) w

wn&k+1 [1+o(wn&k+1)]&w=0

=
(u&%)n&k

(n&k)!
.

This completes the proof for the second expression in (2.4).
For (i) and (ii), we consider only the case k=n and u=0, the other

cases are similar or simpler. Using Remark 1.2, the integral in the first line
of (2.4) becomes

|
C1&=

p0(1, z)
pn(1&v, z)

pn( j&v, z)
(1&z)1 dz=|

C1&=

1
pn(1&v, z)

z j&1pn(1&v, z)
(1&z)1 dz=0

for j�1. From (2.4), it follows that (ii) holds for j�1 and u=0. If j�0,
the integral in the second line of (2.4) vanishes; it follows that
N n

n(0, v, 0&)=0 and N n
n(0, v, j )=0 for j�&1. K

It is now possible to express the kernels in terms of the exponential
splines of Schoenberg [13] (denoted Un, : in the next theorem).

Theorem 2.2. Let

Un, :(% ; v)=
pn(v&%, :)

(���z) pn(v, :)(1&:)
,

then

Nk
n(u, v, %)

={
(u&%)n&k

+

(n&k)!
& :

: # An(1&&)

pn&k(1&u, :)
(1&:)n&k Un, :(1&% ; 1&&)

(&1)n&k+1 (%&u)n&k
+

(n&k)!
+ :

: # An(v)

pn&k(u, :)
(:&1)n&k Un, :(% ; v)

if %>v,

if %<v.

(2.5)

Moreover, let v{{n , and assume pn(v, :)=0. Then

(i) Un, :(%&j ; v)=: jUn, :(% ; v),

(ii) �1
0 Un, :(% ; v) d%=1�(n+1),

(iii) Un, :(% ; v)�0 for % # [0, 1].

Proof. Using (1.16), we observe that pn(%&v, z) is a polynomial with
respect to z if %>v; this is not the case if %<v. Hence if %>v, (2.5) follows
from the Residue Theorem and (2.4). Similarly, using (2.4), we can show
that (2.5) holds if %<v. Finally, (i), (ii), and (iii) are direct consequences
of Remark 1.2. K
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As a result we obtain useful identities for N k
n(u, v, %), in particular (vii)

below which has already been obtained in [2] for n even and in [15] for
n odd.

Corollary 2.3. Let N k
n(u, v, %) be defined for any u, v, % # R by (2.4).

Then

(i) N k
n (u+&, v, %)=N k

n (u, v, %&&) for & # Z,

(ii) N k
n (u, v, %)=N k

n (u, v+&, %) for & # Z,

(iii) N k
n(u, v, %)=(&1)n&k+1 N k

n (1&u, 1&v, 1&%),

(iv) N k
n (u, vn , %)=(&1)n&k+1 N k

n(1&u, vn , 1&%),

(v) N k
n (0, vn , %)=(&1)n&k+1 N k

n(0, vn , &%) for k<n,

(vi) N 0
n (u, v, %)=(&1)n+1 N 0

n (%&v, 1&v, u&v),

(vii) N 0
n (u, vn , %)=(&1)n+1 N 0

n (%&vn , vn , u&vn).

We also have

(a) � l
uN k

n(u, v, %)=N k+l
n (u, v, %) for l=0, ..., n&k&1,

(b) �+
u N n&1

n (u, v, %)=N n
n(u+, v, %) and �&

u N n&1
n (u, v, %)=N n

n(u&, v, %)

where N n
n(u+, v, %)=N n

n(u&, v, %) for u{%.

Proof. Parts (iii) and (vi) follow directly from (2.4). Parts (i), (ii), and
(v) follow from (2.4) and Remark 1.2. Part (iv) follows from (iii) and (ii).
Part (vii) follows from (vi) and (ii) if necessary. Finally, (a) and (b) follow
from (1.3) and Remark 1.2. K

In the next theorem, we prove the exponential decay property of
N k

n (u, v, } ). This is a well known property for v=vn and k=0 [2, 15]. For
k=1, ..., n it could be obtained from the case k=0 and Corollary 2.3(a),
(b). We also obtain (1.2) by integration by parts (for v=vn see also [15,
p. 87] for n odd, and [2, p. 45] for n even).

Theorem 2.4. Let v{{n . Then, there exists a constant c such that

|N k
n(u, v, %)|�c |#| |%|, (2.6)

where #=min[:n(v), :n(1&v)] for :n(v) defined in Remark 1.3. Also, if s is
the cardinal spline interpolation of degree n on Z of f # AC n+1

loc (R) such that
s(l+v)=f (l+v) for l # Z, then e=f&s verify (1.2).

Proof. Inequality (2.6) is a direct consequence of Theorem 2.2(i) and
(2.5). Let s(%)=N k

n (u, v, %) and w(%)=e(l+%). Using Theorem 2.2(i), (ii)
and the fact that e(l+v)=0 for l # Z, it follows that the function
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s(i )(%) w(n&i)(%) is continuous for i{n&k. In addition, if i=n&k, the
function has a unique discontinuity at %=u.

Since s and e are piecewise continuous, and e is of polynomial growth on
R, we obtain from integration by parts and (2.6)

|
�

&�
s(%) w(n+1)(%)= :

n

i=0

(&1) i s(i )(%) w(n&i )(%)| �
&� .

Then (1.2) follows from

(&1)n&k s(n&k)(%) w(k)(%)| �
&�=(&1)n&k [s(n&k)(u+)&s(n&k)(u&)] w(k)(u)

=w(k)(u). K

Finally, let us evaluate Gj (u)=� j+1
j N k

n(u, vn , %) d%, for j # Z, in terms of
the roots of Euler�Frobenius polynomials. For j<0, from Corollary 2.3(iv)
we obtain Gj (u)=(&1)n&k G&j (1&u). For j�1 we use (2.5), An(1&vn)
&[0]=An(vn), and Theorem 2.2(ii) to obtain

Gj (u)=& :
: # An(vn)

pn&k(1&u, :) : j

(n+1)(1&:)n&k . (2.7)

For j=0, we have

G0(u)=
un&k+1

(n&k+1)!
&

1
2?i |C1&=

pn&k(1&u, z)
pn(1&vn , z)

pn+1(1&vn , z)
z(1&z)n&k+1 dz.

Since pl (1&vn , z)=zpl (vn , z) for vn=0 and pl (1&vn , z)=pl (vn , z) for
vn= 1

2 , then

G0(u)=
un&k+1

(n&k+1)!
&

1
2?i |C1&=

pn&k(1&u, z)
pn(vn , z)

pn+1(vn , z)
z(1&z)n&k+1 dz.

Using the Residue Theorem, (1.17), and pl (t, 0)=(1&t) l�l !, we obtain

G0(u)=
un&k+1

(n&k+1)!
&

un&k(1&vn)
(n&k)! (n+1)

& :
: # An(vn)

pn&k(1&u, :) : j

(n+1)(1&:)n&k . (2.8)

3. THE CASE k=n

In this section we obtain values of the bounds An
n(vn) in terms of the

roots of pn(vn , } ).
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Proof of (1.11). From (2.4) we have

N n
n(u, v, %)={ f1(%)= 1

2&H n
n(v, %)

&f2(%)=&1
2&H n

n(v, %)
if %<u,
if %>u,

where

H n
n(v, %)=

1
4?i |C1&=

_ pn(%&v, z)
pn(1&v, z)

&
pn(v&%, z)

pn(v, z) & dz
(1&z)

(3.1)

which is independent of u. From Theorem 2.1 we have

H n
n(v, j)={

1
2

&1
2

for j=0, &1, &2, ...,
for j=1, 2, ... .

(3.2)

Moreover, from (3.1) we obtain H n
n(v, %)=&H n

n(1&v, 1&%) and
H n

n(0, %)=H n
n(1, %). It follows that

H n
n(vn , 1

2+%)=&H n
n(vn , 1

2&%). (3.3)

Let %R=l&$ and %L=1&%R . Using (3.2) and Rolle's Theorem,
�% H n

n(vn , %) is a spline of degree n&1 having at least 2l&2 zeros on
(%L , %R)&(0, 1). Also, the Budan�Fourier Theorem for splines [15, p. 163,
Theorem 4.58] implies Z(%L , %R)(�%H n

n(vn , %))�2l&2. Then, �%H n
n(vn , %)

has no zero on (0, 1). Using (3.2), it follows that H n
n(vn , } ) is decreasing on

(0, 1). Since N n
n(u, vn , 0&)=N n

n(u, vn , 1+)=0 and H n
n(vn , } ) is decreasing,

we have from (3.2) that

sign N n
n(u, vn , %) {>0

<0
if % # (0, u),
if % # (u, 1).

Using (3.3), we obtain

An
n(u, vn)=|

1

0
|N n

n(u, vn , %)| d%+2 |
�

1
|N n

n(u, vn , %)| d%.

Since N n
n(u, vn , } ) has no zero on ( j, j+1) for j # Z&[0], we have

An
n(u, vn)=|

1

0
|N n

n(u, vn , %)| d%+2 } :
�

j=1

(&1) j |
j+1

j
N n

n(u, vn , %) d% } .
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For the first integral, we have

|
1

0
|N n

n(u, vn , %)| d%

=|
u

0
f1(%) d%+|

1

u
f2(%) d%�max{|

1

0
f1(%) d%, |

1

0
f2(%) d%= ,

where f1 , resp. f2 , is increasing, resp. decreasing (since H n
n(vn , } ) is decreas-

ing on (0, 1)). It follows from (2.8)

|
1

0
|N n

n(u, vn , %)| d%�|
1

0
|N n

n(0, vn , %)| d%

=&|
1

0
N n

n(0, vn , %) d%=&G0(0)= 1
2

because the cardinality of the set An(vn) is |An(vn)|=[n&1+2vn]�2. Since

2 } :
�

j=1

(&1) j |
j+1

j
N n

n(u, vn , %) d% }=2 :
�

j=1

(&1) j+1 Gj (u)

and Gj (u)=Gj (0) for j�1, we have

A n
n(u, vn)�A n

n(0, vn)=&G0(0)+2 :
�

j=1

(&1) j+1 Gj (0). (3.4)

Then we obtain (1.11) from (2.7)�(2.8). K

Remark 3.1. The sign structure of N n
n(u, vn , } )=�n

uN 0
n (u, vn , } ) obtained

in the first part of the previous theorem can also be obtained from the
result of [2] which states that N 0

n ( } , vn , %) changes sign precisely at
integers and �n

%N 0
n (u, vn , } ) changes sign strongly precisely across each

knot, hence in Z _ [u]. The proof can be sketched in two steps. First, using
the latter result and Corollary 2.3(i), the sign of �n

%N 0
n ( } , vn , } ) is deduced.

Second, using Corollary 2.3(vii), it follows that N n
n(u, vn , } ) changes sign

strongly at integers and at %=u.

Example 3.2. Exact evaluation of An
n(vn) for n=2 and 3 using (1.11).

(i) For n=2, p2=( 1
2 , z)=(1+6z+z2)�8, A2( 1

2)=[&3+2 - 2],
and A2

2 ( 1
2)=A2

2 (0, 1
2)=(1+2 - 2)�6.

(ii) For n=3, p3(0, z)=(1+4z+z2)�6, A3(0)=[&2+- 3], and
A3

3 (0)=A3
3 (0, 0)=(1+- 3)�4.
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To obtain estimates for An
n(vn) we use (1.11), the cardinality of the set

An(vn), and Cauchy�Schwarz inequality to get

An
n(vn)=

(1&vn)
(n+1)

+
1

n+1
:

: # An(vn)

1&:
1+:

�
(1&vn)
(n+1)

+
1

n+1
|An(vn)| 1�2 I 1�2

n .

(3.5)

But from [8]

In= :
: # An(vn)

\1&:
1+:+

2

�
8
?3 (n+1)(n+2).

Then we obtain

1
2

�An
n(vn)�

(1&vn)
(n+1)

+
2

?3�2 - n+1�2 - n+1. (3.6)

4. THE CASE 1�k�n&1 : ZEROS OF THE KERNEL N k
n(u, vn , %)

This section is concerned with a thorough investigation of the zeros of
the kernels N k

n(u, vn , %) which will be useful to get an upper approximation
for A k

n(vn). Since we consider only v=vn in this section, we will use
N k

n (u, %) for N k
n(u, vn , %). Our method to obtain a good approximation is

based on the determination of the sign of the kernel N k
n(u, } ), which is

directly related to the nature of its zeros.

4.1. Budan�Fourier Theorem for Hermite�Birkhoff Splines. The kernels
N k

n (u, %) are examples of Hermite�Birkhoff splines (HB-splines). In order
to obtain information about the zeros of N k

n(u, %), we will use the Budan�
Fourier Theorem for HB-splines obtained in [10]. This theorem and
related notation and definitions are briefly explained in this section.

Let 6 : a=x0<x1< } } } <xm=b be a partition of the interval [a, b].
For m and n given, we denote by F a (m+1, n+1)-matrix in which all
entries are 0 or 1. F is called an incidence matrix.

We define the space of HB-splines by

s(x)=0 for x � [a, b];

`(F )={s : R � R }s | (xi&1 , xi)
is a polynomial of degree at most n; = .

s(n&j )(x&
i )=s(n&j )(x+

i ) for all (i, j ) such that F i, j=0

By a block in F we mean a sequence [(i, j )], j=k, ..., k+l&1, with
Fi, j=1, and Fi, k&1{1{Fi, k+l ]. The block is called even or odd as l is
even or odd. We say the block is supported if there exists i1 , i2 , j1 , j2 with
i1<i<i2 , j1 , j2<k and Fi1 , j1

=Fi2 , j2
=1. We let b(F ) denote the number

of supported odd blocks in F.
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We now describe how to count the zeros of an HB-spline s. For any
number c we shall write

&1, <0,

s(c)& (s(c)+)={0, if s(x) {=0,

1, >0,

on (c&$, c) (or (c, c+$)) for some $>0.
Now suppose we have numbers :�; such that f (x)=0 on (:, ;) and

s(:)&{0{s(;)+. Define l�0, r�0 by s(:&)= } } } =s(l&1)(:&)=0,
s(l )(:)&{0, s(;+)= } } } =s(r&1)(;+)=0, s(r)(;)+{0, and set s=min(l, r).
Then we say that [:, ;] is a zero of s of multiplicity M, where

M={m,
m+1,

if :=; and s(:)& s(;)+=(&1)m,
otherwise.

Moreover, if :<; we say that [:, ;] is an interval-zero of s of multiplicity
M. Finally, an interval I such that I=[a, ;) or (:, b], where s(x)=0 on
I, is said an interval-zero of multiplicity 0.

Let Z(a, b)(s) be the number of zeros of s on (a, b) counting multiplicity.
For a real vector w=(w0 , ..., wn), let S&w, resp. S+w be the minimal,
resp. maximal number of sign changes in the sequence w achievable by
appropriate assignment of signs to the zero entries of w. If S&w=S+w, we
denote their common value by Sw.

Theorem 4.1 [10, Theorem 2.1, p. 453]. If s # `(F ) has exact degree n
(that is, s(n) is not the zero function and s(n+1)(x)=0 for all x), then

Z(a, b)(s)�S&(s(a+), ..., s(n)(a+))&S+(s(b&), ..., s(n)(b&))

+ :
m&1

i=1

:
n

j=0

F i, j+b(F ).

4.2. Peano Kernels N k
n(u, } ) as HB-Splines. From the representation

(2.3) it follows that N k
n (u, } ) is a HB-spline of degree n with knots

(vn+Z) _ [u]. Considering the zeros of N k
n (u, } ) as defined for HB-splines,

we observe that the zeros of N k
n (u, } ) are either usual zeros of a function

(l=r=m) or interval-zeros.
Let b=%R=l&$ and a=%L=1&%R for l�1 and $>0. The incidence

matrix F has the following form for the different cases n (vn) and u:

(i) n odd (vn=0). For u{vn , F is a (2l+1, n+1)-matrix such that
�i, j Fi, j=2l&1 and b(F )=1. For u=vn , F is a (2l, n+1)-matrix such
that �i, j Fi, j=2l&1, and b(F )=0 for k=1, b(F )=1 for k>1.
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(ii) n even (vn= 1
2). For u{vn , F is a (2l+2, n+1)-matrix such that

�i, j Fi, j=2l and b(F )=1. For u=vn , F is a (2l+1, n+1)-matrix such
that �i, j Fi, j=2l, and b(F )=0 for k=1, b(F )=1 for k>1.

In summary, we have

:
i, j

F i, j+b(F )=2l+1&$k
1 $ u

vn
&n(mod 2), (4.1)

where $ ;
: =1 if :=; or 0 if :{;.

4.3. The Number of Zeros of N k
n(u, } ). We already know from Section 2

that N k
n(u, l )=0 for l # Z but we did not show that those zeros are isolated

or not. The main result of this section is Theorem 4.5 in which it is shown
that almost all kernels N k

n(u, } ) have only isolated zeros (no interval-zero)
and at most one more zero which depends on u.

Using Theorem 4.1 where the count of zeros of N k
n(u, } ) is done on an

interval [a, b]=[%L , %R ], we obtain Theorem 4.5 in three steps. First, in
Theorem 4.2 we analyse the sign structure of the kernel N k

n(u, } ). Second, in
Theorem 4.3 we obtain the cases for which an interval-zero exists. Third, an
upper bound and a lower bound are given in Theorem 4.4 for the number
of zeros.

Theorem 4.2. Let

(i) ri (v, `) be the number of roots of pi (v, z) which are greater than
` where &1<`<0,

(ii) %R=l&$, %L=1&%R where l is a sufficiently large integer and
$>0, and

(iii) uk
n as defined in Remark 1.3.

The kernel N k
n(u, } ) has the following sign properties.

(1) Let |L be the smallest value of An(vn) such that pn&k(u, |L){0,
and $>0 be sufficiently small. If |L exists, then

sign[N k
n(u, %L)]=(&1)n&k+1+l sign[ pn&k(u, |L)], (4.2a)

there exists a constant CL=\1 independent of j and l such that

sign[� j
% N k

n(u, %L)]=CL(&1) l sign[ pn&j(1&$&vn , |L )], (4.2b)

and

S&
L =S&(N k

n(u, %L), �% N k
n(u, %L), ..., �n

% N k
n(u, %L))=rn(1&vn , |L). (4.3)
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(2) Let |R be the smallest value of An(1&vn) such that
pn&k(1&u, |R){0, and $>0 be sufficiently small. If |R exists, then

sign[N k
n(u, %R)]=(&1) l sign[ pn&k(1&u, |R)], (4.4a)

there exists a constant CR=\1 independent of j and l such that

sign[� j
% N k

n(u, %R)]=CR(&1) j+l sign[ pn&j(1&$&vn , |R)], (4.4b)

and

S+
R =S+(N k

n(u, %R), �%N k
n(u, %R), ..., �n

%N k
n(u, %R))=n&rn(1&vn , |R).

(4.5)

Moreover,

(i) if u � [uk
n , 1&uk

n] then :n=|R=|L ;

(ii) if |R{:n , resp. |L{:n , then |L=:n , resp. |R=:n .

Proof. From (2.5),

� j
% N k

n(u, %R)=(&1) j+1 :
: # An (1&vn )

pn&k(1&u, :)
(1&:)n+1&k&j

pn&j(1&$&vn , :)
�z pn(1&vn , :)

: l&1.

For large enough l, we obtain

sign[� j
% N k

n(u, %R)]

=sign _(&1) j+1 pn&k(1&u, |R)
(1&|R)n+1&k&j

pn&j(1&$&vn , |R)
�z pn(1&vn , |R)

| l&1
R &

=CR sign[(&1) j+l pn&j(1&$&vn , |R)],

where CR=\1 but is independent of j and l. Hence, (4.4b) follows. Using
a similar argument, (4.4a) follows from (2.5) and Theorem 2.2. It follows
from Corollary 2.3(iv) that � j

% N k
n(u, %L)=(&1)n&k+1+j � j

%N k
n(1&u, %R),

and (4.2) holds. As a direct consequence of the interlacing properties of the
roots of pn(v, z) we have

S&( p0(v, `), ..., pk(v, `))=rk(v, `) (4.6)

from which we obtain

S +
R =n&S&(N k

n(u, %R), ..., (&1)n �n
%N k

n(u, %R))

=n&S&( pn(1&$&vn , |R), ..., p0(1&$&vn , |R))

=n&rn(1&$&vn , |R).
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This implies (4.5). The proof of (4.3) is similar. We obtain (i) and (ii)
directly from Remark 1.3. K

The occurrence of an interval-zero is based on the following two obser-
vations [9]. First, assume I=[:, ;] is an interval-zero of N k

n(u, } ): if ;>u
then (i) |R does not exist, |L=:n , and u=2vn&k+(&1)n&k+1 uk

n ,
(ii) [max[1&vn , u], �)/I, (iii) : # [u, max[1&vn , u]]; if :<u then
(iv) |L does not exist, |R=:n , and u=2vn&k+1+(&1)n&k uk

n , (v)
(&�, min[vn , u]]/I, (vi) ; # [u, min[vn , u]]. This fact can be proved
by considering N k

n(u, } ) as a HB-spline on the interval [a, b]=[%L , %R]
with knots U=[(vn+Z) _ [u, a, b]] & [a, b]. Second, if N k

n(u, } ) has no
interval-zero, then there exists |L # An(vn) such that pn&k(u, |L){0, and
there exists |R # An(1&vn) such that pn&k(1&u, |R){0.

Theorem 4.3. N k
n(u, } ) has no interval-zero I on R if and only if n=2 or

3 and u # [uk
n , 1&uk

n]. Moreover, when an interval-zero exists

I={[1&vn , �)
(&�, vn]

if u=2vn&k+(&1)n&k+1 uk
n ,

if u=2vn&k+1+(&1)n&k uk
n ,

and all isolated zeros of N k
n(u, } ) are simple and in Z.

Proof. If N k
n(u, } ) has an interval-zero, it follows from the first observa-

tion that u # [uk
n , 1&uk

n]. Assume u=uk
n and |R does not exist (the other

cases are similar). Then, |L=:n , N k
n(uk

n , } ) is of exact degree n on
(&�, uk

n], and N k
n(uk

n , %)=0 for % # [t, �) where 0<t=max[1&vn , u]=
1&vn . From Theorem 4.2, we have

S&(N k
n(uk

n , %L), ..., �n
%N k

n(uk
n , %L))=rn(1&vn , :n)

and

S+(N k
n(uk

n , t), ..., �n
% N k

n(uk
n , t))=n

since at most �n
%N k

n(uk
n , t) is non-zero. It follows

S&
%L

&S +
t =rn(1&vn , :n)&n={

&
n+2

2

&
n+1

2

if n is even

if n is odd.

Considering the HB-spline N k
n(uk

n , } ) on the interval (%L , t), it follows that

:
i

:
j

F i, j+b(F )�l+1.
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Moreover, from (iii) of the first observation, N k
n(uk

n , j )=0 for j=0,
&1, ..., 2&l and these zeros are isolated. Hence,

l&1�Z(%L , t)(N k
n(uk

n , } ))�{
l&

n
2

l&
n&1

2

if n is even,

if n is odd.

This implies that n�2 if n is even, and n�3 if n is odd. Moreover, in these
two cases it follows Z(%L , t)(N k

n(uk
n , } ))=l&1 which implies that all isolated

zeros are simple and element of Z.
Conversely, if n=2 or 3 and u # [uk

n , 1&uk
n], we present explicit expres-

sions for N k
n(u, } ). For n=2 and k=1 we have

N1
2(u1

2 , %)={(%&u1
2)+&2 - 2 u1

2(%+- 2 %2)
0

for 0�%� 1
2 ,

for %> 1
2 ,

where u1
2=(2&- 2)�4, hence I=[ 1

2 , �). For n=3 and k=2 we have

N2
3(u2

3 , %)={(%&u2
3)+&u2

3(1&%)3

0
for 0�%�1,
for %>1,

where u2
3=(3&- 3)�6, hence I=[1, �). For n=3 and k=1 we have

N 1
3(1&u1

3 , %)={((1&u1
3)&%)2

+�2&(1&u1
3)2 (1&%)3�2

0
for 0�%�1,
for %>1,

where u1
3=1�2+- 3 (1&- 2)�6, hence I=[1, �). K

Theorem 4.4. If N k
n(u, } ) has no interval-zero, then Z(%L , %R )(N k

n(u, } ))
�2l&2. Moreover,

(i) for n�2, if u � [uk
n , 1&uk

n] then Z(%L , %R )(N k
n(u, } ))�2l&1.

(ii) for n�4, if u # [uk
n , 1&uk

n] then Z(%L , %R )(N k
n(u, } ))=2l&2. Also,

either |R or |L is equal to :n , the other one is the second lowest value
of An(vn).

As a consequence N k
n(u, } ) has an even, resp. odd, number of sign change on

(%L , %R) if Z(%L , %R )(N k
n(u, } )) is even, resp. odd.

Proof. If N k
n(u, } ) has no interval-zero, the zeros of N k

n(u, } ) are isolated.
Since N k

n(u, j )=0 for j=&l+2, ..., l&1, then Z(%L , %R )(N k
n(u, } ))�2l&2.
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To obtain (i) we use Theorem 4.2 for u � [uk
n , 1&uk

n]. It follows that S &
L =

rn(1&vn , :n)=n&S +
R . Therefore,

S &
L &S +

R =&n+2rn(1&vn , :n)={&2
&1

if n is even;
if n is odd.

(4.7)

The result follows from (4.1), Theorem 4.1, and (4.7). To obtain (ii), let us
suppose that n&k is even (the case n&k odd is similar). We have
pn&k(uk

n , :n)=0 and pn&k(1&uk
n , :n){0. Hence, |R=:n and since

Nk
n(uk

n , } ) has no interval-zero it follows that |L exists by the second obser-
vation. From Theorem 4.2

S&
L &S+

R =&n+rn(1&vn , :n)+rn(1&vn , |L)={&2&j
&1&j

if n is even
if n is odd,

where j is the number of elements in An(vn) smaller than |L . Therefore, we
obtain

Z(%L , %R )(N k
n(uk

n , } ))�2l&1&j.

It follows that j=1. Finally, if N k
n(u, } ) has only isolated zeros, the count-

ing procedure of zeros used here preserves the parity between the number
of sign changes and the number of zeros on an interval. If N k

n(u, } ) has an
interval-zero, it is a end interval-zero from the first observation. Since these
intervals have multiplicity 0 from the definition, the desired result holds
also in that case. K

From Corollary 2.3, the kernels N k
n(u, } ) have the following special

properties:

(i) N k
n(0, } ) is an even function for n&k odd and an odd function for

n&k even. It follows that %=0 is a double zero of N k
n(0, } ) for n&k odd,

and Z(%L , %R )(N k
n(0, } ))=2l&2 for n&k even.

(ii) N k
n( 1

2 , 1
2+} ) is an even function for n&k odd and an odd func-

tion for n&k even. It follows that %= 1
2 is a simple zero of N k

n( 1
2 , } ) for n&k

even, and Z(%L , %R )(N k
n( 1

2 , } ))=2l&2 for n&k odd.

Let

Ik
n={u # [0, 1] }N

k
n(u, } ) has no interval-zero on R, and

there exists [%L , %R] such that Z(%L , %R )(N k
n(u, } ))=2l&1= ,

Jk
n={u # [0, 1] }N

k
n(u, } ) has no interval-zero on R, and

for all [%L , %R ] we have Z(%L , %R )(N k
n(u, } ))=2l&2= .
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We have

Ik
n & Jk

n=<, (4.8a)

for n=2 or 3, [0, 1]&Ik
n _ Jk

n=[uk
n , 1&uk

n], (4.8b)

for n�4, Ik
n _ Jk

n=[0, 1]. (4.8c)

The preceding results and Corollary 2.3 lead to the following theorem.

Theorem 4.5. The zeros of N k
n(u, } ) are related to the intervals Ik

n and
Jk

n in the following way.

(i) If u # Jk
n , then Z is the set of zeros of N k

n(u, } ), and these zeros
are simple and isolated.

(ii) If u # Ik
n , then the set of zeros of N k

n(u, } ) is Z _ [�k
n(u)]. If

�k
n(u) � Z, then all the zeros are simple and isolated. If �k

n(u) # Z, �k
n(u) is a

double zero and all other zeros are simple. Also,

�k
n(u)+�k

n(1&u)=1. (4.9)

(iii) If n=2 or 3, and u # [uk
n , 1&uk

n] then N k
n(u, %)=0 on Z _ I

where I is of the form (&�, vn ] or [1&vn , �) (see Theorem 4.3) and Z&I
is the set of isolated simple zeros.

4.4. The Sign of the Kernel N k
n(u, %). Let u � [uk

n , 1&uk
n], and consider

l sufficiently large. It follows from Theorem 4.2 that

sign N k
n(u, %R)=(&1) l sign pn&k(1&u, :n),

sign N k
n(u, %L)=(&1)n&k+1+l sign pn&k(u, :n).

Hence

sign N k
n(u, %)={(&1) l sign pn&k(1&u, :n)

(&1)n&k+1+l sign pn&k(u, :n)
for % # (l&1, l ),
for % # (1&l, 2&l )

(4.10)

for sufficiently large l. It follows

sign[N k
n(u, %L) N k

n(u, %R)]=(&1)n&k+1 sign[ pn&k(1&u, :n) pn&k(u, :n)].

But

sign[ pn&k(1&u, :n) pn&k(u, :n)]={1
&1

if u # (uk
n , 1&uk

n),
if u # [0, uk

n) _ (1&uk
n , 1].
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Hence,

sign[N k
n(u, %L) N k

n(u, %R)]={(&1)n&k+1

(&1)n&k

if u # (uk
n , 1&uk

n),
if u # [0, uk

n) _ (1&uk
n , 1].

Using the last equation, and the last statement of Theorem 4.4, it follows
that

Ik
n={(uk

n , 1&uk
n)

[0, uk
n) _ (1&uk

n , 1]
if n&k is even,
if n&k is odd,

and Jk
n is defined to satisfy (4.8).

Using (4.10), Remark 1.3, and Theorem 4.4, we obtain the sign of
Nk

n(u, %) as indicated in Figs. 4.1 and 4.2.

Theorem 4.6. Let {(%)=(&1) l if % # (l, l+1). If u # Ik
n and % � Z,

sign N k
n(u, %)={&{(%) sign pn&k(1&u, :n)

(&1)n&k {(%) sign pn&k(u, :n)
for %>�k

n(u),
for %<�k

n(u)

(4.11)

and if u # Jk
n ,

sign N k
n(u, %)=&{(%) sign pn&k(1&u, :n)=(&1)n&k {(%) sign pn&k(u, :n).

Proof. Since the sign changes of {(%) and N k
n(u, %) occur respectively at

each % # Z and % # Z _ [�k
n(u)] or % # Z, we obtain the result from

(4.10). K

4.5. Properties of �k
n . In this section the monotonicity and differen-

tiability properties of �k
n are established in Theorem 4.14. To obtain these

properties we analyse the inverse function +k
n of �k

n .

Theorem 4.7. Let n&k be even. There exists a unique increasing continuous
function +k

n : [ 1
2 , �) � [1

2 , 1&uk
n] such that +k

n(�k
n(u))=u for u # [ 1

2 , 1&uk
n).

Moreover, +k
n( 1

2
+)= 1

2 , and

(i) if n=3, +1
3 is strictly increasing on [ 1

2 , 1] and +1
3(%)=1&+1

3 for
%�1 (see Fig. 4.3);

(ii) if n�4, +k
n is strictly increasing on [ 1

2 , �) and lim% � � +k
n(%)=

1&uk
n (see Fig. 4.4).

We can extend +k
n on (&�, 1

2] such that +k
n( 1

2&%)=1&+k
n( 1

2+%).

Proof. Let % # (1, �) and % � Z. Then N k
n( } , %) is a polynomial of degree

n&k. Considered as a HB-spline, its incidence matrix in [0, 1] has two
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FIG. 4.1. Sign of N k
n(u, %) for n&k odd and _k

n=(&1)(n&k+1)�2.

FIG. 4.2. Sign of N k
n(u, %) for n&k even and _k

n=(&1)(n&k)�2.

FIG. 4.3. Sketch of +1
3.

FIG. 4.4. Sketch of +k
n for n�4 and n&k even.
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columns. Then �i, j Fi, j=0 and b(F )=0. Also from Corollary 2.3(a),(b),
Theorem 4.6, and (4.6), we obtain

S&
0 =S( pn&k(1, :n), pn&k&1(1, :n), ..., p1(1, :n), p0(1, :n)),

S+
1 =S( pn&k(0, :n), pn&k&1(0, :n), ..., p1(0, :n), p0(0, :n)),

and S&
0 &S+

1 =1. Then from Theorem 4.1, 0�Z(0, 1)(N k
n( } , %))�1. More-

over, since sign[N k
n( 1

2 , %) N k
n(1, %)]=&1, then Z(0, 1)(N k

n( } , %))=1. Hence
+1

3(%)=1&u1
3 , and for n�4, +k

n(%) # ( 1
2 , 1&uk

n).
For % # ( 1

2 , 1), N k
n( } , %) is a HB-spline of degree n&k with a unique knot

at u=% on [0, 1]. Its incidence matrix is such that �i, j Fi, j=1 and
b(F )=0. Also

S&
0 =S( pn&k(1, :n), pn&k&1(1, :n), ..., p1(1, :n), p0(1, :n))

S +
1 =S((&1)n&k pn&k(1, :n), (&1)n&k&1 pn&k&1(1, :n), ...,

&p1(1, :n), p0(1, :n))

=n&k&S( pn&k(1, :n), pn&k&1(1, :n), ..., p1(1, :n), p0(1, :n)).

Hence, we have S&
0 &S+

1 =0 for n&k even. Then 0�Z(0, 1)(N k
n( } , %))�1.

Moreover, since

sign[N k
n( 1

2 , %) N k
n(1, %)]=&1,

then Z(0, 1)(N k
n( } , %))=1 and +k

n(%) # ( 1
2 , 1&uk

n). Lemmas 4.9 and 4.10
complete the proof. K

Theorem 4.8. Let n&k be odd. There exists a unique increasing continuous
function +k

n : [0, �) � [0, uk
n] such that +k

n(�k
n(u))=u for u # [0, uk

n).
Moreover, +k

n(0+)=0, and

(i) if n=2, +1
2 is strictly increasing on [0, 1

2 ] and +1
2(%)=u1

2 for %> 1
2

(see Fig. 4.5);

FIG. 4.5. Sketch of +1
2.
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FIG. 4.6. Sketch of +2
3.

(ii) if n=3, +2
3 is strictly increasing on [0, 1] and +2

3(%)=u2
3 for %�1

(see Fig. 4.6);

(iii) if n�4, +k
n is strictly increasing on [0, �) and lim% � � +k

n(%)=
uk

n (see Fig. 4.7).

We have also a second function +� k
n : (&�, 1] � [1&uk

n , 1] such that
+� k

n(%)=1&+k
n(1&%) for % # (&�, 1].

Proof. For % # (1, �) and % � Z we proceed as in n&k even case and
obtain 0�Z(0, 1)(N k

n( } , %))�1. But since sign[N k
n(0, %) N k

n( 1
2 , %)]=&1

then Z(0, 1)(N k
n( } , %))=1. For % # (0, 1) we obtain S&

0 &S+
1 =1, and

consequently 0�Z(0, 1)(N k
n( } , %))�2. But sign[N k

n(0, %) N k
n( 1

2 , %)]=
sign[N k

n( 1
2 , %) N k

n(1, %)]=&1 and Z(0, 1)(N k
n( } , %))=2. From Theorem 4.4,

we obtain +1
2(%) # (0, u1

2) for % # (0, 1
2), +1

2(%)=u1
2 for % # [ 1

2 , 1), and for n�3,
+k

n(%) # (0, uk
n) for % # (0, 1). Lemmas 4.9 and 4.10 complete the proof. K

Lemma 4.9. The function +k
n is strictly increasing on the set of non-

integer % 's such that

+k
n(%) # {(0, uk

n)
( 1

2 , 1&uk
n)

for n&k odd,
for n&k even.

Proof. Let us remark that the assumption on the %'s implies that
+k

n(%) # Ik
n . We proceed by contradiction to get the result. Let (+k

n(%1), %1)

FIG. 4.7. Sketch of +k
n for n�4 and n&k odd.
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and (+k
n(%2), %2) be such that %1<%2 . The case +k

n(%1)=+k
n(%2)=u is not

possible, otherwise %1 and %2 would be two non-integer zeros of N k
n(u, } ),

which is impossible from Theorem 4.5. If +k
n(%1)>+k

n(%2), let % # (%1 , %2)
such that % # (l, l+1) for some l # Z. Let n&k even. Since �k

n( 1
2)= 1

2 and
1
2<%1<%2 , it follows from Theorem 4.6 that

sign N k
n( 1

2 , %)=&{(%) sign pn&k(1& 1
2 , :n),

sign N k
n(+k

n(%2), %)={(%) sign pn&k(+k
n(%2), :n)={(%) sign pn&k( 1

2 , :n),

sign N k
n(+k

n(%1), %)=&{(%) sign pn&k(1&+k
n(%1), :n)

=&{(%) sign pn&k( 1
2 , :n).

This implies the existence of at least two zeros for N k
n( } , %) which is

impossible. Finally, using �k
n(0)=0, 0<%1<%2 , we obtain similarly the

result for n&k odd. K

Lemma 4.10. The functions +k
n can be defined for % # Z in such a way that

they are continuous.

Proof. Fix % and consider the limits u&=limx � %& +k
n(x) and u+=

limx � %+ +k
n(x). These limits exist from Lemma 4.9, and u&�u+ . For

% � Z, from the continuity of N k
n( } , } ), we obtain N k

n(u+ , %)=0=
Nk

n(u& , %). Then u+=u&=+k
n(%) because the zero is unique. For % # Z, if

u&<u+ , let u # (u& , u+). Then sign[N k
n(u, %&=) N k

n(u, %+=)]=1 for
0<=<1. Hence % is a double zero of N k

n(u, } ) and hence �% N k
n(u, %)=0.

But �%N k
n(u, %) is a polynomial of degree n&k in u which is then identically

zero on (u& , u+), and hence on (0, 1). But this implies % is at least a
double zero for any u # (0, 1) which is impossible. K

As a consequence of the sign structure of N k
n(u, %) and Corollary

2.3(a),(b), the functions +k
n are separated as follows (see [9]):

(i) +n&1
n (%)<% for % # (0, 1];

(ii) for n&k�2, we have (&1)n&k +k
n(%)>(&1)n&k +k+1

n (%) for
% # [0, �).

Finally from Corollary 2.3(a),(b) and the Implicit Function Theorem, we
can show [9] that the function +k

n are continuously differentiable functions
for %�0 such that D+k

n(%)>0 except where +k
n is constant. It follows that

their inverse functions �k
n are continuously differentiable, strictly increasing

on Ik
n , and D�k

n(u)>0.
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5. THE CASE 1�k�n&1: VALUES AND BOUNDS
FOR Ak

n(u, vn) AND Ak
n(vn)

5.1. Error Bounds. In this section some results are given in terms of
n-degree Euler splines En+1 (see [13, p. 153; 7]). In particular we will use
the inequalities

}E2n+1 \1
2+}�2 \2

?+
2n+1

, |E2n(0)|�2
?2

8 \2
?+

2n

, |Ej+1(vj )|�\2
?+

j

(5.1)

and the relation

pn(t, &1)=(&1)n En+1(t).

Theorem 5.1. Let u � Ik
n . Then

Ak
n(u, vn)=|En&k+2(u)|�2n&k+1.

Since vn&k+1 � Ik
n , it follows

max
u � I n

k
Ak

n(u, vn)=Ak
n(vn&k+1 , vn).

Proof. For u � Ik
n the sign of N k

n(u, %) alternates from one integer
to another. Let f (x)=(1�2n+1) En+2(x). Then f (n+1)(x)=E1(x) and
& f (n+1)&�=1. The n-degree interpolating spline of f is s=0. We therefore
obtain from (1.2)

Ak
n(u, vn)= } |

�

&�
N k

n(u, %) f (n+1)(%) d% }=|e(k)(u)|=| f (k)(u)|

=
|En&k+2(u)|

2n&k+1 . K

Example 5.2. We have A1
2( 1

2 , 1
2)=A2

3(
1
2 , 0)= } } } =An&1

n ( 1
2 , vn)= 1

8 , and
A1

3(0, 0)=A2
4(0, 1

2)= } } } =An&2
n (0, vn)= 1

24 , since An&1
n ( 1

2 , vn)=E3( 1
2)�22,

An&2
n (0, vn)=E4(0)�23, and E1(u)=1, E2(u)=2u&1, E3(u)=2(u2&u),

E4(u)=(4u3�3)&2u2+ 1
3 for u # [0, 1].
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Lemma 5.3. Let % � Z.

(i) For n&k odd and %>0, |N k
n(0, %)|>|N k

n(u, %)| for any
u # (0, +k

n(%)].

(ii) For n&k even and %> 1
2 , |N k

n( 1
2 , %)|>|N k

n(u, %)| for any
u # ( 1

2 , +k
n(%)].

Proof. (i) Since sign N k+1
n (u, %) is constant on (0, +k+1

n (%)) and
+k

n(%)�+k+1
n (%), it follows from Corollary 2.3(a),(b) that sign �uN k

u(u, %) is
constant on (0, +k

n(%)). Then the maximum of |N k
n(u, %)| on [0, +k

n(%)] is at
u=0 because N k

n(+k
n(%), %)=0. (ii) The proof is similar. K

Theorem 5.4. For u # Ik
n , we have Ak

n(u, vn) � Ak
n(vn & k + 1 , vn) +

Ak
n(vn&k , vn).

Proof. Let u # Ik
n . Then

Ak
n(u, vn)= }|

�

&�
N k

n(u, %) E1(%) d% }+2 |
�

� n
k (u)

|N k
n(u, %)| d%

=
|En&k+2(u)

2n&k+1 +2 |
�

� n
k (u)

|N k
n(u, %)| d%.

For n&k odd, we consider u # [0, uk
n). Since |N k

n(0, %)|�|N k
n(u, %)| for

%��k
n(u) from Lemma 5.3, we have

Ak
n(u, vn)�

|En&k+2(uk
n)|

2n&k+1 +2 |
�

0
|N k

n(0, %)| d%�
|En&k+2( 1

2)|
2n&k+1 +Ak

n(0, vn).

For n&k even, we consider u # [ 1
2 , 1&uk

n). Since |N k
n( 1

2 , %)|�|N k
n(u, %)| for

%��k
n(u) from Lemma 5.3, we have

Ak
n(u, vn)�

|En&k+2(1&uk
n)|

2n&k+1 +2 |
�

1�2
|N k

n( 1
2 , %)| d%

�
|En&k+2(1)|

2n&k+1 +Ak
n( 1

2 , vn). K

We obtain (1.12) from Theorems 5.1 and 5.4.

Remark 5.5 (Proof of (1.13) and (1.14)). (a) Let n&k odd. Then
vn&k=0, vn&k+1= 1

2 , and from Theorem 5.1

Ak
n( 1

2 , vn)=|En&k+2(
1
2)|�2n&k+1.
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Also

Ak
n(0, vn)=2 |

�

0
|N k

n(0, %)| d%.

From the sign properties of N k
n(0, } ) (see Fig. 4.1), and Gj given by

(2.7)�(2.8), we obtain (1.13).

(b) Let n&k even. Then vn&k= 1
2 , vn&k+1=0, and from Theorem 5.1

Ak
n(0, vn)=|En&k+2(0)|�2n&k+1.

Also

Ak
n( 1

2 , vn)=2 |
�

1�2
|N k

n( 1
2 , %)| d%=2 |

1

1�2
|N k

n( 1
2 , %)| d%+2 |

�

1
|N k

n( 1
2 , %)| d%.

From the sign properties of N k
n( 1

2 , } ) (see Fig. 4.2), we have (1.14).

Let us observe that, from (5.1),

Ak
n(vn)�Ak

n(vn&k+1 , vn)=
|En&k+2(vn&k+1)|

2n&k+1 �\2
?+

n&k+1 1
2n&k+1=

1
?n&k+1

which is the lower estimate for (1.15). The upper estimate in (1.15) is
established in Theorem 5.7.

Theorem 5.6. For any 0�k�n&1 we have

Ak
n(vn)�Ak

n(vn&k+1 , vn)+ 1
2Ak+1

n (vn). (5.2)

Proof. Using the regularity of N k
n and �k

n , and Corollary 2.3(a),(b), we
obtain from (1.6)

Du Ak
n(u, vn)=|

�

&�
Du |N k

n(u, %)| d%.

Hence

|DuAk
n(u, vn)|�|

�

&�
|N k+1

n (u, %)| d%=Ak+1
n (u, vn)�Ak+1

n (vn). (5.3)

Then, for any u # [0, 1
2], (5.2) follows. K
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Theorem 5.7. For 1�k�n&1, we have

(i) for n&k odd, Ak
n(vn)<_1

2
+

- n+1
?1�2 & 1

?n&k�
- n+1

?n&k ;

(ii) for n&k even, Ak
n(vn)�_2+?

4
+

?1�2

2
- n+1& 1

?n&k�2
- n+1

?n&k .

Proof. (i) Using (1.13), we obtain

Ak
n(0, vn)�

2
n+1 \ :

: # An (vn )

1&:
1+:+ max

: # An(vn ) }
pn&k(1, :)

(1&:)n&k+1 } , (5.4)

and from (3.5) and (3.6) we have

2
n+1

:
: # An (vn )

1&:
1+:

�
4

?3�2 - n+1.

But if we consider

8m(1&t, x)=e(1&t)x pm(t, &ex)
(1+ex)m+1 ,

it can be shown [9] that for m odd

|8m(0, x)|�|8m(0, 0)|=
| pm(1, &1)|

2m+1 =
|Em+1(0)|

2m+1 .

Then

max
: # An (vn ) }

pn&k(1, :)
(1&:)n&k+1 }�|En&k+1(0)|

2n&k+1 .

Hence, from (1.12) and Remark 5.5

Ak
n(vn)�

|En&k+2(1�2)|
2n&k+1 +

- n+1
?3�2

|En&k+1(0)|
2n&k&1 .

Using Ej+1(vj )�(2�?) j&1, the result follows. (ii) Using (1.14), Theorem 5.6,
and part (i) we obtain (ii). K

5.2. A Special Result for the Case k=n&1. Using the derivative of
�n&1

n , we have the following slight improvement.

Theorem 5.8. max[An&1
n (0, vn), 1�8] � An&1

n (vn) � max[An&1
n (0, vn),

(un&1
n �2), 1�8].
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Proof. From Theorem 5.4, for u # In&1
n , An&1

n (u, vn)=|E3(u)|�8+
2W n&1

n (u, �n&1
n (u)) where

W l
n(u, y)=|

�

y
|N l

n(u, %)| d%.

It follows DuW n&1
n (u, �n&1

n (u))=&W n
n(u, �n&1

n (u))�0 and D2
uW n&1

n (u,
�n&1

n (u))=|N n
n(u, �n&1

n (u))| Du�n&1
n (u)�0. Then W n&1

n (u, �n&1
n (u)) is a

decreasing continuous convex function on [0, un&1
n ) and limu � u n

n&1

Wn&1
n (u, �n&1

n (u))=0. Hence for u # [0, un&1
n )

An&1
n (u, vn)�

u
2

+2W n&1
n (u, �n&1

n (u))

�max {2W n&1
n (0, �n&1

n (0)),
un&1

n

2 ==max {An&1
n (0, vn),

un&1
n

2 = .

The result follows since An&1
n (u, vn)� 1

8=An&1
n ( 1

2 , vn) for u # [uk
n , 1

2 ]. K

Example 5.9. Values of An&1
n (vn) for n=2 and 3.

(a) n=2: max[A1
2(0, 1

2), 1
8] � A1

2( 1
2) � max[A1

2(0, 1
2), u1

2�2, 1
8]. Since

A1
2(0, 1

2)=2 |:2 |�3(1+:2)(1&:2) where :2=&3+2 - 2, and u1
2=

(2&- 2)�4, we have A1
2(0, 1

2)=1�6 - 2, u1
2�2=(2&- 2)�8, and then

A1
2( 1

2)= 1
8 .

(b) n=3: max[A2
3(0, 0), 1

8]�A2
3(0)�max[A2

3(0, 0), u2
3�2, 1

8]. Since
A2

3(0, 0)=2 |:3 |�4(1+:3)(1&:3) where :3=&2+- 3, and u2
3=(3&- 3)�6,

we have A2
3(0, 0)=- 3�12, u2

3�2=(3&- 3)�12, and then A2
3(0)=- 3�12.

5.3. A Result for Low Values of k. The bounds given by Theorem 5.7
are not the best possible for low values of k, in fact those in (1.10) are
better. The next result improves these bounds under a condition on uk

n

and uk+1
n .

Theorem 5.10. Let 1�k�n&1. If (&1)n&k+1 (uk+1
n &uk

n)>0, then

Ak
n(vn)�max {2

|En&k+2(uk
n)|

2n&k+1 ,
|En&k+2(vk+1

n )|
2n&k+1 =

and Ak
n(vn)�1�?n&k.

Proof. Let n be odd. We know that Ak
n(u, vn)=|En&k+2(u)|�2n&k+1 for

u # [uk
n , 1

2 ]. Also, from (5.3), |DuAk
n(u, vn)|�Ak+1

n (vn) for u # [0, uk
n). But
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for u # [0, uk+1
n ), Ak+1

n (u, vn)=|En&k+1(u)|�2n&k. Hence, if uk
n<uk+1

n , for
u # [0, uk

n) we have

Ak
n(u, vn)�Ak

n(uk
n , vn)+|

un
k

0
Ak+1

n (u, vn) du=2
|En&k+2(uk

n)|
2n&k+1

and the result follows. The even case can be proved similarly. Finally, the
last bound follows from (5.1). K

Example 5.11. For n=3 and k=1, we have A1
3(0, 0)= 1

24 from
Example 5.2. Since u1

3= 1
2&(- 2&1) - 3�6 and u2

3= 1
2&(- 3�6), we have

u2
3<u1

3 and we can apply Theorem 5.10. Since E4(u)=(4u3&6u2+1)�3, we
obtain the desired result.

Examples 3.2, 5.9, and 5.11 complete the proofs of the values given in
Example 1.1.

6. CONCLUSION

In this paper we have analyzed the Peano kernel N k
n(u, vn , %) related

to the cardinal spline interpolation problem. We have obtained a new
representation for this kernel and investigated the nature of its zeros. We
have applied these results to get exact explicit expressions for Ak

n(u, vn) and
Ak

n(vn), and bounds for Ak
n(u, vn) and Ak

n(vn) (optimal only for k=n). We
have obtained good bounds for Ak

n(vn) for k=1, ..., n&1, but exact explicit
expressions remain to be found in that case. To be more specific, we could
improve the upper bounds in (1.15) if a sharper inequality is obtained
for (5.4).
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